TRITERPENE GLYCOSIDES OF *Tetrapanax papyriferum*. II. ISOLATION AND STRUCTURE DETERMINATION OF GLYCOSIDES St-E₂, St-F₂, St-J₂, and St-K₂ FROM STEM BARK

V. G. Strigunov,¹ N. I. Grishkovets,¹ N. V. Tolkacheva,¹ and A. S. Shashkov²

UDC 547.918:543.422

Stem bark of Tetrapanax papyriferum yielded the new triterpene glycosides 3-O-[β -D-glucopyranosyl-(1 \neg 3)]- β -D-galactopyranosyl-(1 \neg 2)-O- α -L-arabinopyranosides of oleanolic and echinocystic acids and their 28-O- α -L-rhamnopyranosyl-(1 \neg 4)-O- β -D-glucopyranosyl-(1 \neg 6)-O- β -D-glucopyranosyl esters. Their structures were established using chemical and physicochemical methods.

Key words: *Tetrapanax papyriferum*, Araliaceae, triterpene glycosides, new glycosides of oleanolic and echinocystic acids.

Triterpene glycoside fractions St-E, St-F, St-J, and St-K that were isolated by us earlier from leaves of *Tetrapanax papyriferum* [1] were treated with an ether solution of diazomethane, which increased the chromatographic mobility of one of the components in each fraction (designated St-E₁, St-F₁, St-J₁, and St-K₁) and left that of another unchanged (St-E₂, St-F₂, St-J₂, and St-K₂). Preparative separation of these glycoside pairs in each fraction was performed in silica gel with elution by CHCl₃—C₂H₅OH—H₂O.

Total acid hydrolysis of St-E_2 (1) produced arabinose, galactose, glucose, and the algycone oleanolic acid. The chromatographic mobility of 1 is consistent with the progenin obtained by total base hydrolysis of St-H_2 , which we previously isolated from *Tetrapanax* stems [1]. We also identified 1 as the progenin of glycoside St-H_2 by comparing ¹³C chemical shifts of atoms in the carbohydrate part of 1 and those of the carbohydrate chain on C-3 of the aglycone described earlier for St-H_2 [1]. The chemical shifts of C atoms in the aglycone of 1 agree with the literature values for 3-O-glycosylated oleanolic acid [2].

Thus, glycoside St-E₂ is the 3-O-[β -D-glucopyranosyl-(1 \rightarrow 3)]-[β -D-galactopyranosyl-(1 \rightarrow 2)]-O- α -L-arabinopyranoside of oleanolic acid. Glycoside St-E₂ is a new triterpene glycoside.

Total acid hydrolysis of St-F₂ (2) gave arabinose, galactose, glucose, and echinocystic acid. The chromatographic mobility of 2 is identical to that of the progenin of glycoside St-J₂ prepared by total base hydrolysis [2].

The ¹³C NMR of **2** was analyzed as for that of glycoside **1**. The ¹³C NMR spectrum of **2** differs from that of **1** only for the chemical shifts of several atoms in the aglycone, the signals of which are unambiguously assigned by comparing them with the literature data for 3-O-glycosylated echinocystic acid [2].

Thus, glycoside St-F₂ is the 3-O-[β -D-glucopyranosyl-(1 \rightarrow 3)]-[β -D-galactopyranosyl-(1 \rightarrow 2)]-O- α -L-arabinopyranoside of echinocystic acid and is also a new triterpene glycoside.

Total acid hydrolysis of glycoside St-J₂ (**3**) yields arabinose, galactose, glucose, rhamnose, and the aglycone oleanolic acid. The chromatographic mobility of **3** is the same as that for deacetylated glycoside St-H₂, which was prepared by mild ammonolysis [1]. Total base hydrolysis of **3** produces a progenin that is identical by TLC to **1**. The NMR of **3** was consistent with six monosaccharide units. The ¹³C NMR spectrum of **3** was practically the same as that of St-H₂ [1] with the exception of the signals for C-4, C-5, and C-6 of the internal glucose (Glc^{""'}) in the trisaccharide chain on C-28 of the aglycone.

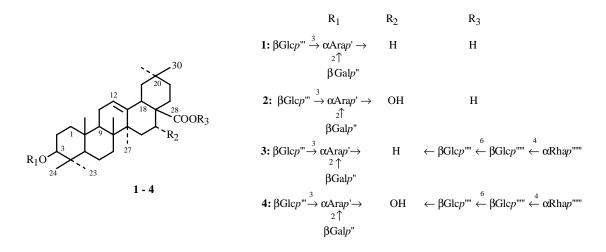
¹⁾ N. I. Vernadskii Tavricheskii National University, 95007, Simferopol, ul. Yaltinskaya, 4; 2) N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, 117913, Moscow, B-334, Leninskii pr., 47. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 151-153, March-April, 2001. Original article submitted March 23, 2001.

C-atom	Compound				
	1	2	3	4	
1	38.8	38.9	38.9	39.1	
2	26.4	26.3	26.5	26.5	
3	88.8	88.8	88.9	89.1	
4	39.5	39.3	39.6	39.5	
5	55.9	56.2	56.0	56.2	
6	18.6	18.5	18.5	18.5	
7	33.3	33.4	33.1	33.3	
8	39.9	39.8	40.0	40.2	
9	48.2	47.2	48.0	47.1	
10	37.1	37.1	36.9	37.0	
11	23.7	23.8	23.5	23.9	
12	122.5	122.6	122.8	122.9	
13	144.8	144.7	144.2	144.6	
14	42.2	42.1	42.1	42.0	
15	28.3	36.3	28.2	36.1	
16	23.8	74.8	23.4	74.3	
17	46.6	48.9	47.1	49.2	
18	42.0	41.4	41.8	41.1	
19	46.5	47.4	46.2	47.2	
20	30.9	31.0	30.7	30.8	
21	34.3	36.3	33.9	36.1	
22	33.4	32.6	32.8	32.2	
23	28.1	28.1	28.2	28.0	
24	17.0	16.9	16.8	16.9	
25	15.6	15.5	15.5	15.7	
26	17.4	17.5	17.7	17.5	
27	26.2	27.5	26.0	27.2	
28	180.1	180.4	176.5	176.1	
29	33.2	33.3	33.0	33.1	
30	23.9	24.7	23.8	24.6	

TABLE 1. Chemical Shifts of ^{13}C Atoms in Aglycones of St-E₂ (1), St-F₂ (2), St-J₂ (3) and St-K₂ (4) (δ , ppm, 0 = TMS, C₅D₅N)

The C-4, C-5 and C-6 signals of this glucose were assigned unambiguously by comparison with the literature values for the unacetylated trisaccharide fragment β -Glcp- $^{-6}\beta$ -Glcp- $^{-4}\alpha$ -Rhap [2]. Furthermore, the 13 C NMR spectrum of **3** lacks characteristic signals of acetyl 13 C atoms.

Thus, glycoside St-J₂ is the 28-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)-O- β -D-glucopyranosyl-(1 \rightarrow 6)-O- β -D-glucopyranosyl ester of the 3-O-[β -D-glucopyranosyl-(1 \rightarrow 3)]-[β -D-galactopyranosyl-(1 \rightarrow 2)]-O- α -L-arabinopyranoside of oleanolic acid and is a new triterpene glycoside.


Total acid hydrolysis of glycoside St-K₂ (4) gives arabinose, galactose, glucose, rhamnose, and echinocystic acid.

The chromatographic mobility of **4** is the same as that of the deacetylated glycoside St-J_2 , which was prepared by mild ammonolysis [1]. Total base hydrolysis of **4** gave the progenin, which was identical to **2**.

The ¹³C NMR of **4** was analyzed analogously to that of **3** by comparing the spectra of **2** and **3** and glycoside St-J₂. It was found that glycoside St-K₂ is the 28-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)-O- β -D-glucopyranosyl-(1 \rightarrow 6)-O- β -D-glucopyranosyl ester of the 3-O-[β -D-glucopyranosyl-(1 \rightarrow 3)]-[β -D-galactopyranosyl-(1 \rightarrow 2)]- α -L-arabinopyranoside of oleanolic acid and is also a new triterpene glycoside.

A (Compound				
C-atom	1	2	3	4	
Ara'					
1	104.7	104.8	104.8	104.8	
2	77.4	77.3	77.3	77.4	
3	82.6	82.7	82.5	82.6	
4	68.0	68.0	68.1	68.0	
5	65.1	65.0	64.9	65.1	
Gal''					
1	104.5	104.6	104.6	104.5	
2	73.1	73.2	73.3	73.1	
3	75.2	75.3	75.1	75.3	
4	69.6	69.7	69.8	69.7	
5	76.2	76.2	76.3	76.2	
6	61.8	61.6	61.7	61.7	
Glc'''					
1	104.5	104.5	104.5	104.6	
2	75.0	75.2	75.1	75.1	
3	77.9	78.0	77.9	78.1	
4	71.5	71.4	71.5	71.5	
5	78.0	78.1	78.0	78.1	
6	62.6	62.4	62.5	62.5	
Glc''''					
1			95.5	95.7	
2			73.8	73.9	
3			78.6	78.6	
4			70.8	70.8	
5			77.8	77.9	
6			69.3	69.4	
Glc''''					
1			104.5	104.4	
2			75.1	75.0	
3			76.4	76.5	
4			78.5	78.4	
5			77.0	76.9	
6			61.4	61.5	
Sha'''''					
1			102.6	102.8	
2			72.3	72.4	
3			72.5	72.6	
4			73.9	74.0	
5			70.2	70.4	
6			18.3	18.3	

TABLE 2. Chemical Shifts of ¹³C Atoms in Carbohydrates of St-E₂ (1), St-F₂ (2), St-J₂ (3), St-K₄ (4) (δ , ppm, 0 = TMS, C₅D₅N)

EXPERIMENTAL

General comments and the method for isolating glycoside fractions have been published [1].

Fractions St-E, St-J, and St-K were dissolved in a minimal amount of CH_3OH , treated with an excess of diazomethane in ether, held for 30 min, evaporated to dryness, and separated by chromatography on silica gel with elution by water-saturated $CHCl_3$ — C_2H_5OH (2:1) to give pure glycosides $St-E_1$ (35 mg), $St-E_2$ (80 mg), $St-F_1$ (65 mg), $St-F_2$ (42 mg), $St-J_1$ (50 mg), $St-J_2$ (55 mg), $St-K_1$ (70 mg), and $St-K_2$ (36 mg).

Glycoside St-E₂ (1). Total acid hydrolysis of 1 gives arabinose, galactose, glucose, and oleanolic acid. ¹³C NMR data for 1 appear in Tables 1 and 2.

Glycoside St-F₂ (2). Total acid hydrolysis of 2 gives arabinose, galactose, glucose, and echinocystic acid. ¹³C NMR data for 2 appear in Tables 1 and 2.

Glycoside St-J₂ (3). Total acid hydrolysis of 3 gives arabinose, galactose, glucose, rhamnose, and oleanolic acid. Total base hydrolysis of 3 gives the progenin, which is identical to that of glycoside 1. ¹³C NMR data appear in Tables 1 and 2.

Glycoside St-K₂ (4). Total acid hydrolysis of 4 gives arabinose, galactose, glucose, rhamnose, and echinocystic acid. Total base hydrolysis of 4 gives the progenin, which is identical to that of glycoside 2. ¹³C NMR data appear in Tables 1 and 2.

REFERENCES

- 1. V. I. Grishkovets, V. S. Strigunov, A. S. Shashkov, and V. Ya. Chirva, Khim. Prir. Soedin., 147 (2001).
- V. I. Grikhkovets, D. Yu. Sidorov, L. A. Yakovishin, N. N. Arnautov, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 377 (1996).